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Abstract

We present data compression techniques hinged on the notion of a motif, interpreted
here as a string of intermittently solid and wild characters that recurs more or less
frequently in an input sequence or family of sequences. This notion arises originally
in the analysis of sequences, particularly biomolecules, due to its multiple impli-
cations in the understanding of biological structure and function, and it has been
the subject of various characterizations and study. Correspondingly, motif discovery
techniques and tools have been devised. This task is made hard by the circumstance
that the number of motifs identifiable in general in a sequence can be exponential
in the size of that sequence. A significant gain in the direction of reducing the
number of motifs is achieved through the introduction of irredundant motifs, which
in intuitive terms are motifs of which the structure and list of occurrences cannot
be inferred by a combination of other motifs’ occurrences. Although suboptimal,
the available procedures for the extraction of some such motifs are not prohibitively
expensive. Here we show that irredundant motifs can be usefully exploited in lossy
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compression methods based on textual substitution and suitable for signals as well
as text. Actually, once the motifs in our lossy encodings are disambiguated into
corresponding lossless codebooks, they still prove capable of yielding savings over
popular methods in use. Preliminary experiments with these fungible strategies
at the crossroads of lossless and lossy data compression show performances that
improve over popular methods (i.e. GZip) by more than 20% in lossy and 10% in
lossless implementations.

Traditionally data compression methods are partitioned into lossy and lossless.
Typically, lossy compression is applied to images and more in general to signals
susceptible to some degeneracy without lethal consequence. On the other
hand, lossless compression is used in situations where fidelity is of the essence,
which applies to high quality documents and perhaps most notably to textfiles.
Lossy methods rest mostly on transform techniques whereby, for instance, cuts
are applied in the frequency, rather than in the time domain of a signal. By
contrast, lossless textual substitution methods are applied to the input in
native form, and exploit its redundancy in terms of more or less repetitive
segments or patterns.

NARRATIVE:
Let s = s155...5, be a string of length |s| = n over an alphabet ¥. A character
from ¥, say o, is called a solid character and ‘.’ is called a “don’t care”

character. A motif is any element of ¥ or any string on £ - (XU {.})*- X.

Definition 1.1 (k-Motif m, Location list £,,) Given a string s on alphabet ¥
and a positive integer k, k < |s|, a string m on X U “.‘ is a motif with location
list L, = (I1,12,...,1), if all of the following hold: (1) m[1],m[|m|] € £, (2)
g > k, and (3) there does not exist a location [, [ # [;, 1 <1 < g such that m
occurs at [ on s (the location list is of maximal size).

Definition 1.2 (Maximal Motif) Let my, ma, ..., my be the motifs in a string
s. A motif m; is maximal in composition if and only if there exists no my,
l # 4 with L,,, = L,,, and m; < my. A motif m;, maximal in composition, is
also maximal in length if and only if there exists no motif m;, j # ¢, such that
m; is a sub-motif of m; and |L,,,| = |£;,;|. A maximal motif is a motif that
is maximal both in composition and in length.

Requiring maximality in composition and length limits the number of motifs
that may be usefully extracted and accounted for in a string. However, the
notion of maximality alone does not suffice to bound the number of such
motifs. It can be shown that there are strings that have an unusually large



A. Apostolico et al. / Electronic Notes in Discrete Mathematics 21 (2005) 219-225 221

number of maximal motifs without conveying extra information about the
input. A maximal motif m is irredundant if m and the list £,, of its occurrences
cannot be deduced by the union of a number of lists of other maximal motifs.
Conversely, we call a motif m redundant if m (and its location list £,,) can
be deduced from the other motifs without knowing the input string s. More
formally:

Definition 1.3 (Redundant/Irredundant motif) A maximal motif m, with
location list £,,, is redundant if there exist maximal sub-motifs m;, 1 < i < p,
such that £, = L, U Lp,... ULy, (i.e., every occurrence of m on s is
already implied by one of the motifs my, mo,...,m,). A maximal motif that
is not redundant is called an irredundant motif

Definition 1.4 (Basis) Given a sequence s on an alphabet ¥, let M be the
set of all maximal motifs on s. A set of maximal motifs B is called a basis of
M iff the following hold: (1) for each m € B, m is irredundant with respect
to B—{m}, and, (2) let G(X) be the set of all the redundant maximal motifs
generated by the set of motifs X', then M = G(B).

Theorem 1.5 Every irredundant 2-motif in s is the meet of two suffizes of s.

An immediate consequence of Theorem 1.5 is a linear bound for the cardinality
of our set of irredundant 2-motifs: by maximality, these motifs are just some
of the n — 1 meets of s with its own suffixes. Thus

Theorem 1.6 The number of irredundant 2-motifs in a string x of n char-
acters is O(n).

With its underlying convolutory structure, Theorem 1.5 suggests a number of
immediate ways for the extraction of irredundant motifs from strings and ar-
rays, using available pattern matching with or without FFT. The construction
used for our experiments must take into account additional parameters related
to the density of solid characters, the maximum motif length and minimum
allowed number of occurrences. The algorithm follows a steepest descent ap-
proximation to the optimal solution and is described in the full version of this
paper. Each phase of our the paradigm alternates the selection of the pattern
to be used in compression with the actual substitution and encoding. In prac-
tice, we estimate at logi the number of bits needed to encode the integer i (we
refer to, e.g., [1] for reasons that legitimate this choice). In one scheme (here-
after, Code;) [2], we eliminate all occurrences of m, and record in succession
m, its length, and the total number of its occurrences followed by the actual
list of such occurrences. Letting |m/| denote the length of m, f,, the number of
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occurrences of m in the textstring, |X| the cardinality of the alphabet and n
the size of the input string, the compression brought about by m is estimated
by subtracting from the f,,|m|log|%| bits originally encumbered by this motif
on s, the expression |m|log |2|+log |m|+ f,, log n+log f,, charged by encoding,
thereby obtaining: G(m) = (f,—1)|m|log|Z|—log|m|— f,logn —log fu,.
This is accompanied by a fidelity loss L(m) represented by the total number
of don’t cares introduced by the motif, expressed as a fraction of the original

length. If d such gaps were introduced, this would be:
fmdlog|Z| d
fmlm[log X m|

Other encodings are possible (see, e.g., [2]). The table 1 is an example of 8-bit
(last column).

Fig. 1. Compression and reconstruction of images. The original is on the first column,
next to its reconstruction by interpolation of two closest solid pixels. Black dots used in the
figures of the last column are used to display the distribution of the don’t care characters.
Compression of “Bridge” at 1/4 and 1/3 (shown here) ’.’/char densities yields savings of
6.49% and 17.84% respectively. Correspondingly. 0,31% and 12,50% of the pixels differ
from original after reconstruction.

Ziv and Lempel designed a class of compression methods based on the idea of
back-reference: while the textfile is scanned, substrings or phrases are identi-
fied and stored in a dictionary, and whenever, later in the process, a phrase or
concatenation of phrases is encountered again, this is compactly encoded by
suitable pointers or indices [8,10,11]. In view of Theorem 1.5 and of the good
performance of motif based off-line compression [4], it is natural to inquire
into the structure of ZL and ZLW parses which would use these patterns in
lieu of exact strings. Possible schemes along these lines include, e.g., adapta-
tions of those in [9], or more radical schemes in which the innovative add-on
inherent to ZLW phrase growth is represented not by one symbol alone, but
rather by that symbol plus the longest match with the substring that follows
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Table 1
Lossy compression of gray-scale images (1 pixel = 1 byte).

file file len GZip len Codecs, Codec; | %Diff | %loss | *./
[%compr] [%compr] [%compr] | gzip char

bridge | 66336 | 61657;705) | 60987506 | 57655505 | 649 | 0.42 | 1/4
60987505 | 506562563 | 17.84 | 14.29 | 1/3
camera | 66336 | 48750051 | 478424788 | 461923036 | 525 | 0.74 | 1/6
4804417 57 | 458823083 | 588 | 217 | 1/5
AT316p5.67) | 430963503 | 11.60 | 9.09 | 1/4
lena | 262944 | 234543115 10) | 22684415 73 | 210786[1955 | 10.13 | 4.17 | 1/4
1863592.13) | 175126(33.30] | 25.33 | 20.00 | 1/3
peppers | 262944 | 23233411y g4 | 218175017.03) | 199605(23.55) | 14.09 | 6.25 | 1/4
180783(3,.25) | 173561 (33,09 | 25.30 | 20.00 | 1/3

some previous occurrence of the phrase. In other words, the task of vocabu-
lary build-up is assigned to the growth of (candidate), perhaps irredundant,
2-motifs.

We test the power of ZLW encoding on the motifs produced in greedy off-
line schemata such as above. Despite the apparent superiority of such greedy
off-line approaches in capturing long range repetitions, one drawback is in
the encoding of references, which are bi-directional and thus inherently more
expensive than those in ZLW.This requires building a small dictionary that
needs to be sent over to the decoder together with the encoded string.

With the dictionary in place, the parse phase of the algorithm proceeds in
much the same way as in the original scheme, with the proviso that once
a motif is chosen, then all of its occurrences are to be deployed. Decoding
is easier. The recovery follows closely the standard ZLW, except for initial-
ization of the dictionary. The only difference is thus that now the decoder
receives, as part of the encoding, also an initial dictionary containing all mo-
tifs utilized, which are used to initialize the trie. The table below summarize
results obtained on gray-scale images (Table 2, 1 pixel = 1 byte), for each
case, the compression is reported first for lossy encoding with various don’t
care densities, then also for the respective lossless completions.
CONCLUSION: Irredundant motifs seem to provide an excellent reper-
toire of codewords for grammar based compression and syntactic inference of
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Table 2
Lossy/Lossless compression of gray-scale images using LZW-like encoding.

File | File len GZip | LZW-like | % Diff | % Loss | LZW-like | % Diff | ¢/
len lossy | GZip lossless GZip | car

bridge | 66.336 | 61.657 38.562 | 37.46 0.29 38.715 | 37.21 | 1/4
38.366 | 37.78 5.35 42.288 | 3141 | 1/3
camera | 66.336 | 48.750 34.321 | 29.60 0.00 34.321 | 29.60 | 1/6
34.321 | 29.60 0.06 34.321 | 29.60 | 1/5
32.887 | 32.54 6.16 35.179 | 27.84 | 1/4
lena | 262.944 | 234.543 120.308 | 48.71 1.36 123.278 | 47.44 | 1/4
123.182 | 47.48 7.32 135.306 | 42.31 | 1/3
peppers | 262.944 | 232.334 117.958 | 49.23 1.75 121.398 | 47.75 | 1/4
119.257 | 48.67 4.45 129.012 | 4447 | 1/3

documents of various kinds. Various completion strategies and possible ex-
tensions (e.g., to nested descriptors) and generalizations (notably, to higher
dimensions) suggest that the notions explored here can develop in a versatile
arsenal of data compression methods capable of bridging lossless and lossy
textual substitution in a way that is both aesthetically pleasant and practi-
cally advantageous. Algorithms for efficient motif extraction as well as for
their efficient deployment in compression are highly desirable from this per-
spective. In particular, algorithms for computing the statistics for maximal
sets of non-overlapping occurrences for each motif should be set up for use
in gain estimations, along the lines of the constructions given in [6] for solid
motifs. Progress in these directions seems not out of reach.
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